Working with pandas, I have df1 indexed by time samples:
data = '''\time flags input 8228835.0 53153.0 32768.08228837.0 53153.0 32768.08228839.0 53153.0 32768.08228841.0 53153.0 32768.08228843.0 61345.0 32768.0'''fileobj = pd.compat.StringIO(data)df1 = pd.read_csv(fileobj, sep='\s+', index_col='time')
df2 indicates time ranges with start and end to define ranges where the state of 'check' is True:
data = '''\ check start end20536 True 8228837 822899320576 True 8232747 823286920554 True 8230621 823076120520 True 8227351 822750720480 True 8223549 822366920471 True 8221391 8221553'''fileobj = pd.compat.StringIO(data)df2 = pd.read_csv(fileobj, sep='\s+')
What I need to do is add a column for 'check' to df1 and fill out the actual time ranges defined in df2 with the value of True. All others should be False. An example result would be:
flags input checktime 8228835.0 53153.0 32768.0 False8228837.0 53153.0 32768.0 True8228839.0 53153.0 32768.0 True8228841.0 53153.0 32768.0 True8228843.0 61345.0 32768.0 True....8228994.0. 12424.0. 32768.0. False