Quantcast
Viewing all articles
Browse latest Browse all 14040

Passing a numpy array to C function through ctypes gives wrong results if the numpy array is not casted

Consider this simple C source code which computes the mean of an array of int, stores it in a structure and returns an error code:

#include <stdio.h>enum errors {    NO_ERRORS,    EMPTY_ARRAY};struct Result {    double mean;};enum errors calculateMean(struct Result *result, int *array, int length) {    if (length == 0) {        return EMPTY_ARRAY; // Return EMPTY_ARRAY if the array is empty    }    int sum = 0;    for (int i = 0; i < length; i++) {        sum += array[i];    }    result->mean = (double)sum / length;    return NO_ERRORS; // Return NO_ERRORS if calculation is successful}

The code is compiled to a shared library named libtest_ctypes.so.

I have the following ctypes interface:

import ctypesimport enumimport numpy as npimport enumlib_path = "./libtest_ctypes.so" lib = ctypes.CDLL(lib_path)# The Result structureclass Result(ctypes.Structure):    _fields_ = [("mean", ctypes.c_double)]# The Errors enumclass Errors(enum.IntEnum):    NO_ERRORS = 0    EMPTY_ARRAY = 1# Defining a signature for `calculateMean`calculate_mean = lib.calculateMeancalculate_mean.argtypes = [ctypes.POINTER(Result), ctypes.POINTER(ctypes.c_int), ctypes.c_int]calculate_mean.restype = Errors# Runs `calculateMean`def calculate_mean_interface(array):    result = Result()    length = len(array)    c_array = array.ctypes.data_as(ctypes.POINTER(ctypes.c_int))    error = calculate_mean(ctypes.byref(result), c_array, length)    return error, resultif __name__ == "__main__":    array = np.array([1, 2, 3, 4, 5])    error, result = calculate_mean_interface(array)    if error == Errors.EMPTY_ARRAY:        print("Error: Empty array!")    elif error == Errors.NO_ERRORS:        print("Mean:", result.mean)

Running the python interface gives a wrong result 1.2.To my undestanding this is due to a difference in types between the numpy array (64 bit integeres) and the C's int on my machine.I can get the right result, 3.0, casting the array to ctype.c_int through numpy's .astype():

def calculate_mean_interface(array):    result = Result()    length = len(array)    #** CAST ARRAY TO CTYPES.C_INT**    array = array.astype(ctypes.c_int)    c_array = array.ctypes.data_as(ctypes.POINTER(ctypes.c_int))    error = calculate_mean(ctypes.byref(result), c_array, length)    return error, result

However numpy's casting requires extra memory and time.What is the best way to achieve a correct result without casting?I'd like this to be portable and, if possible, I don't want to specify a dtype when initializing the numpy array.


Viewing all articles
Browse latest Browse all 14040

Trending Articles