Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 13891

CUDA_ERROR_INVALID_SOURCE: device kernel image is invalid

$
0
0

I'm trying using cupy in my docker container.I use to containers which one is for CUDA and cuDNN, and the other is for cupy.

I tried this code.

    import cupy as cp    cupy_array = cp.array([1, 2, 3])    cupy_result = cupy_array + 5     print("CuPy Result:", cupy_result)

The full error log is like

    Traceback (most recent call last):      File "<stdin>", line 1, in <module>      File "cupy/_core/core.pyx", line 1191, in cupy._core.core.ndarray.__add__      File "cupy/_core/core.pyx", line 1591, in cupy._core.core.ndarray.__array_ufunc__      File "cupy/_core/_kernel.pyx", line 1292, in cupy._core._kernel.ufunc.__call__      File "cupy/_core/_kernel.pyx", line 1319, in cupy._core._kernel.ufunc._get_ufunc_kernel      File "cupy/_core/_kernel.pyx", line 1025, in cupy._core._kernel._get_ufunc_kernel      File "cupy/_core/_kernel.pyx", line 72, in cupy._core._kernel._get_simple_elementwise_kernel      File "cupy/_core/core.pyx", line 2141, in cupy._core.core.compile_with_cache      File "/usr/local/lib/python3.8/dist-packages/cupy/cuda/compiler.py", line 492, in _compile_module_with_cache        return _compile_with_cache_cuda(      File "/usr/local/lib/python3.8/dist-packages/cupy/cuda/compiler.py", line 614, in _compile_with_cache_cuda    mod.load(cubin)      File "cupy/cuda/function.pyx", line 264, in cupy.cuda.function.Module.load      File "cupy/cuda/function.pyx", line 266, in cupy.cuda.function.Module.load      File "cupy_backends/cuda/api/driver.pyx", line 210, in cupy_backends.cuda.api.driver.moduleLoadData      File "cupy_backends/cuda/api/driver.pyx", line 60, in cupy_backends.cuda.api.driver.check_status    cupy_backends.cuda.api.driver.CUDADriverError: CUDA_ERROR_INVALID_SOURCE: device kernel image is invalid

The result of nvidia-smi

+---------------------------------------------------------------------------------------+    | NVIDIA-SMI 535.129.03             Driver Version: 535.129.03   CUDA Version: 12.2     |    |-----------------------------------------+----------------------+----------------------+    | GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |    | Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |    |                                         |                      |               MIG M. |    |=========================================+======================+======================|    |   0  NVIDIA GeForce RTX 4080        Off | 00000000:01:00.0  On |                  N/A |    |  0%   32C    P8               6W / 320W |    483MiB / 16376MiB |      4%      Default |    |                                         |                      |                  N/A |+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+    | Processes:                                                                            |    |  GPU   GI   CI        PID   Type   Process name                            GPU Memory |    |        ID   ID                                                             Usage      |    |=======================================================================================|+---------------------------------------------------------------------------------------+

The result of nvcc -V

    nvcc: NVIDIA (R) Cuda compiler driver    Copyright (c) 2005-2022 NVIDIA Corporation    Built on Tue_Mar__8_18:18:20_PST_2022    Cuda compilation tools, release 11.6, V11.6.124    Build cuda_11.6.r11.6/compiler.31057947_0

The result of cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

    #define CUDNN_MAJOR 8    #define CUDNN_MINOR 4    #define CUDNN_PATCHLEVEL 0    --    #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)    #endif /* CUDNN_VERSION_H */

The result of pip3 freeze | grep cupy is cupy-cuda116==10.6.0

The results above are all shown in docker container for cupy.

I ran docker for CUDA and cuDNN withsudo docker run --name cuda11.6.1-cudnn8 --gpus all --runtime=nvidia -it \ --privileged --env="DISPLAY=:0:0" -v=/tmp/.X11-unix:/tmp/.X11-unix:ro \ -v=/home/youngjoo/Documents/Elevation_ws:/home/youngjoo/Documents/Elevation_ws \ -v=/dev:/dev -w=/home/youngjoo/Documents/Elevation_ws \ nvidia/cuda:11.6.1-cudnn8-devel-ubuntu20.04

My OS is Ubuntu 20.04.

Docker version is 24.0.7, build afdd53b.

How can I resolve this?

I deleted all docker containers and restart but the result was same.


Viewing all articles
Browse latest Browse all 13891

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>