Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 13891

Tensorflow2.2.0 ValueError: Sliced assignment is only supported for variables

$
0
0

I'm trying to update cache while training a UNet. I'm rewriting some function from tf=2.13.0 to 2.2.0 because the latter is the only available version on my GPU cluster.

  • Ubuntu 20.04
  • Python 3.7.4
  • Tensorflow 2.2.0
class Distance(tf.keras.metrics.Metric):    def __init__(self, name='DistanceMetric', distance='cm', sigma=2.5, data_size=None,                 validation_size=None, points=None, point=None, percentile=None):        super(Distance, self).__init__(name=name)        self.counter = tf.Variable(initial_value=0, dtype=tf.int32)        self.distance = distance        self.sigma = sigma        self.percentile = percentile        if percentile is not None and point is not None:            assert (type(percentile) == float)            self.percentile_idx = tf.Variable(tf.cast(tf.round(percentile * validation_size), dtype=tf.int32))        else:            self.percentile_idx = None        self.point = point        self.points = points        self.cache = tf.Variable(initial_value=tf.zeros([validation_size, points]),                                 shape=[validation_size, points])        print('cache shape', self.cache.shape)        self.val_size = validation_size    def update_state(self, y_true, y_pred, sample_weight=None):        n, h, w, p = tf.shape(y_pred)[0], tf.shape(y_pred)[1], tf.shape(y_pred)[2], tf.shape(y_pred)[3]        # print('y true', y_true)        y_true = normal_distribution(self.sigma, y_true[:, :, 0], y_true[:, :, 1], h=h, w=w, n=n, p=p)        # print('y true', y_true)        if self.distance == 'cm':            x1, y1 = cm(y_true, h=h, w=w, n=n, p=p)            x2, y2 = cm(y_pred, h=h, w=w, n=n, p=p)            d = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5            # print('d shape before', d.shape)            d = d[:, :, 0]            # print('d shape after ', d.shape)        elif self.distance == 'argmax':            d = (tf.cast(tf.reduce_sum(((argmax_2d(y_true) - argmax_2d(y_pred)) ** 2), axis=1),                         dtype=tf.float32)) ** 0.5        temp = tf.minimum(self.counter + n, self.val_size-1)        condition = tf.math.less_equal(self.counter, self.val_size)        def true_fn():            with tf.control_dependencies([self.cache[self.counter:temp, :].assign(d[0:(temp-self.counter), :])]):            # self.cache[self.counter:temp, :].assign(d[0:(temp-self.counter), :])                return self.cache        def false_fn():            return self.cache        # self.cache = tf.cond(condition, self.cache[self.counter:temp, :].assign(d[0:(temp-self.counter), :]), self.cache)        self.cache = tf.cond(condition, true_fn, false_fn)        self.counter.assign(self.counter + n)    def result(self):        if self.percentile_idx is not None:            temp = tf.sort(self.cache[:self.val_size, self.point], axis=0, direction='ASCENDING')            return temp[self.percentile_idx]        elif self.point is not None:            return tf.reduce_mean(self.cache[:, self.point], axis=0)        else:            return tf.reduce_mean(self.cache, axis=None)    def reset_states(self):        self.cache.assign(tf.zeros_like(self.cache))        self.counter.assign(0)        if self.percentile is not None and self.point is not None:            self.percentile_idx.assign(tf.cast(self.val_size * self.percentile, dtype=tf.int32))

self.cache should be a tf.Variable (see def init), but I can't slice it to add new values.

ValueError: in user code:/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:571 train_function  *    outputs = self.distribute_strategy.run(/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:951 run  **    return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_re$    return self._call_for_each_replica(fn, args, kwargs)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_r$    return fn(*args, **kwargs)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:543 train_step  **    self.compiled_metrics.update_state(y, y_pred, sample_weight)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/keras/engine/compile_utils.py:411 update_state    metric_obj.update_state(y_t, y_p)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/keras/utils/metrics_utils.py:90 decorated    update_op = update_state_fn(*args, **kwargs)/trinity/home/r084755/DRF_AI/distal-radius-fractures-x-pa-and-lateral-to-clinic/Code files/LandmarkDetection.py:163 update_state    self.cache = tf.cond(condition, true_fn, false_fn)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/ops/control_flow_ops.py:1392 cond_for_tf_v2    return cond(pred, true_fn=true_fn, false_fn=false_fn, strict=True, name=name)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py:507 new_func    return func(*args, **kwargs)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/ops/control_flow_ops.py:1177 cond    return cond_v2.cond_v2(pred, true_fn, false_fn, name)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/ops/cond_v2.py:84 cond_v2    op_return_value=pred)/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py:981 func_graph_from_py_func    func_outputs = python_func(*func_args, **func_kwargs)/trinity/home/r084755/DRF_AI/distal-radius-fractures-x-pa-and-lateral-to-clinic/Code files/LandmarkDetection.py:157 true_fn    with tf.control_dependencies([self.cache[self.counter:temp, :].assign(d[0:(temp-self.counter), :])]):/opt/ohpc/pub/easybuild/software/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4/lib/python3.7/site-packages/tensorflow/python/ops/array_ops.py:1160 assign    raise ValueError("Sliced assignment is only supported for variables")ValueError: Sliced assignment is only supported for variables

Please can somebody help me. I'm unexperienced with tf. I've tried many options, but keep running into new issues.


Viewing all articles
Browse latest Browse all 13891

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>