Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 17360

Expected a 2-dimensional container but got

$
0
0

I have the following sample code, where I need to draw 2 lines, as shown in the plot below:

anomalies = anomaly_df.loc[anomaly_df['anomaly'] == True]#Plot anomaliessns.lineplot(x=anomaly_df['Date'], y=scaler.inverse_transform(anomaly_df['Close']))sns.scatterplot(x=anomalies['Date'], y=scaler.inverse_transform(anomalies['Close']), color='r')

But when i run this code i got error :

ValueError                                Traceback (most recent call last)Cell In[16], line 4      1 anomalies = anomaly_df.loc[anomaly_df['anomaly'] == True]      3 #Plot anomalies----> 4 sns.lineplot(x=anomaly_df['Date'], y=scaler.inverse_transform(anomaly_df['Close']))      5 sns.scatterplot(x=anomalies['Date'], y=scaler.inverse_transform(anomalies['Close']), color='r')File c:\Users\hemic\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\preprocessing\_data.py:1085, in StandardScaler.inverse_transform(self, X, copy)   1082 check_is_fitted(self)   1084 copy = copy if copy is not None else self.copy-> 1085 X = check_array(   1086     X,   1087     accept_sparse="csr",   1088     copy=copy,   1089     dtype=FLOAT_DTYPES,   1090     force_all_finite="allow-nan",   1091 )   1093 if sparse.issparse(X):   1094     if self.with_mean:File c:\Users\hemic\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\validation.py:1035, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)   1028         else:   1029             msg = (   1030                 f"Expected 2D array, got 1D array instead:\narray={array}.\n"...   1039         "dtype='numeric' is not compatible with arrays of bytes/strings."   1040         "Convert your data to numeric values explicitly instead."   1041     )ValueError: Expected a 2-dimensional container but got <class 'pandas.core.series.Series'> instead. Pass a DataFrame containing a single row (i.e. single sample) or a single column (i.e. single feature) instead.Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

I tried putting x and y at original['Date'], and original['Close'] but I got empty result.


Viewing all articles
Browse latest Browse all 17360

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>