Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 16595

drawing an oriented 3d bounding box over image using lidar_to_camera extrinsic and camera_intrinsic matrix using opencv-python

$
0
0

I am using opencv-python to read images, for each image I have a list of 3d bounding boxes having xyz_location, xyz_scale, and xyz_rotation (euler angles) in lidar coordinates and the provided transformation matrices are extrinsic_matrix from (lidar to camera coords) and intrinsic_matrix (from camera coords to pixel coords).

I needed to create a way to overlay/draw the bounding boxes on top of the image and then add image to open3d.visualization.Visualizer. For that I created the following function:

def __add_bbox__(self, label_dict: dict):        if 'camera_bbox' not in label_dict: return        camera_bbox_dict = label_dict['camera_bbox']        center = camera_bbox_dict['xyz_center']        w, l, h = camera_bbox_dict['wlh_extent']        rotation_matrix = camera_bbox_dict['xyz_rotation_matrix']        color = camera_bbox_dict['rgb_bbox_color']        # define 3D bounding box        x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]        y_corners = [0, 0, 0, 0, -h, -h, -h, -h]        z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]        # rotate and translate 3D bounding box        corners_3d = np.dot(rotation_matrix, np.vstack([x_corners, y_corners, z_corners]))        # moving the center to object center        corners_3d[0, :] = corners_3d[0, :] + center[0]        corners_3d[1, :] = corners_3d[1, :] + center[1]        corners_3d[2, :] = corners_3d[2, :] + center[2]        # if any corner is behind camera, return        if np.any(corners_3d[2, :] < 0.1): return        # project 3D bounding box to 2D image        corners_2d = label_dict['calib']['P2'].reshape(3, 4) @ nx3_to_nx4(corners_3d.T).T        corners_2d = corners_2d.T # 3x8 -> 8x3        corners_2d = corners_2d[:, 0:2] / corners_2d[:, 2:3]        corners_2d = corners_2d[:, 0:2].astype(np.int32)        # draw 2D bounding box        img_np = np.asarray(self.img)        for k in range(0, 4):            i, j = k, (k + 1) % 4            cv2.line(img_np, (corners_2d[i, 0], corners_2d[i, 1]), (corners_2d[j, 0], corners_2d[j, 1]), color, self.cfg.visualization.camera.bbox_line_width)            i, j = k + 4, (k + 1) % 4 + 4            cv2.line(img_np, (corners_2d[i, 0], corners_2d[i, 1]), (corners_2d[j, 0], corners_2d[j, 1]), color, self.cfg.visualization.camera.bbox_line_width)            i, j = k, k + 4            cv2.line(img_np, (corners_2d[i, 0], corners_2d[i, 1]), (corners_2d[j, 0], corners_2d[j, 1]), color, self.cfg.visualization.camera.bbox_line_width)        self.img = o3d.geometry.Image(img_np)        self.__add_geometry__('image', self.img, False)

whereas the __add_geometry__ function simply removes the previous open3d.geometry.Image and add the new one.

I have a calibration file reader function named Hanlder as following:

def Handler(label_path: str, calib_path: str):    output = []    # read calib    calib_file_name = os.path.basename(calib_path).split('.')[0]    calib_path = calib_path.replace(calib_file_name, 'front') # front camera calib    calib_exists = os.path.exists(calib_path)    if calib_exists:        with open(calib_path, 'r') as f: calib = json.load(f)        extrinsic_matrix  = np.reshape(calib['extrinsic'], [4,4])        intrinsic_matrix  = np.reshape(calib['intrinsic'], [3,3])    # read label file    if os.path.exists(label_path) == False: return output    with open(label_path, 'r') as f: lbls = json.load(f)    for item in lbls:        annotator = item['annotator'] if 'annotator' in item else 'Unknown'        obj_id = int(item['obj_id'])        obj_type = item['obj_type']        psr = item['psr']        psr_position_xyz = [float(psr['position']['x']), float(psr['position']['y']), float(psr['position']['z'])]        psr_rotation_xyz = [float(psr['rotation']['x']), float(psr['rotation']['y']), float(psr['rotation']['z'])]        psr_scale_xyz = [float(psr['scale']['x']), float(psr['scale']['y']), float(psr['scale']['z'])]        label = dict()        label['annotator'] = annotator        label['id'] = obj_id        label['type'] = obj_type        label['psr'] = psr        if calib_exists:            label['calib'] = calib            label['calib']['P2'] = nx3_to_nx4(intrinsic_matrix)        lidar_xyz_center = np.array(psr_position_xyz, dtype=np.float32)        lidar_wlh_extent = np.array(psr_scale_xyz, dtype=np.float32)        lidar_rotation_matrix = o3d.geometry.OrientedBoundingBox.get_rotation_matrix_from_xyz(psr_rotation_xyz)        if obj_type in colors: lidar_bbox_color = [i / 255.0 for i in colors[obj_type]]        else: lidar_bbox_color = [0, 0, 0]        label['lidar_bbox'] = {'xyz_center': lidar_xyz_center, 'wlh_extent': lidar_wlh_extent, 'xyz_rotation_matrix': lidar_rotation_matrix, 'rgb_bbox_color': lidar_bbox_color}        if calib_exists:            R_x = np.array([                [1,       0,              0],                [0,       math.cos(psr_rotation_xyz[0]),   -math.sin(psr_rotation_xyz[0])],                [0,       math.sin(psr_rotation_xyz[0]),   math.cos(psr_rotation_xyz[0])]            ])            #Calculate rotation about y axis            R_y = np.array([                [math.cos(psr_rotation_xyz[1]),      0,      math.sin(psr_rotation_xyz[1])],                [0,                       1,      0],                [-math.sin(psr_rotation_xyz[1]),     0,      math.cos(psr_rotation_xyz[1])]            ])            #Calculate rotation about z axis            R_z = np.array([                [math.cos(psr_rotation_xyz[2]),    -math.sin(psr_rotation_xyz[2]),      0],                [math.sin(psr_rotation_xyz[2]),    math.cos(psr_rotation_xyz[2]),       0],                [0,               0,                  1]])            camera_rotation_matrix = np.matmul(R_x, np.matmul(R_y, R_z))            camera_translation_matrix = lidar_xyz_center.reshape([-1,1])            rotation_and_translation_matrix = np.concatenate([camera_rotation_matrix, camera_translation_matrix], axis=-1)            rotation_and_translation_matrix = np.concatenate([rotation_and_translation_matrix, np.array([0,0,0,1]).reshape([1,-1])], axis=0)            origin_point = np.array([0, 0, 0, 1])            camera_xyz_center = np.matmul(extrinsic_matrix, np.matmul(rotation_and_translation_matrix, origin_point))            camera_xyz_center = camera_xyz_center[0:3]            if obj_type in colors: camera_bbox_color = colors[obj_type]            else: camera_bbox_color = [0, 0, 0]            label['camera_bbox'] = {'xyz_center': camera_xyz_center, 'wlh_extent': lidar_wlh_extent, 'xyz_rotation_matrix': lidar_rotation_matrix, 'rgb_bbox_color': camera_bbox_color}        output.append(label)    return output

The Hanlder creates a list of label_dict and for each label_dict I call __add_bbox__ function.

This setup draws bounding boxes but they seems off, example images shown below:

This is how my result looks:enter image description here

This is how it should look (ignore coloring and one face filled, just focus the bounds):enter image description here

, I know for sure that transformation matrices are correct (they same label and calib file works in official github implementation here https://github.com/naurril/SUSTechPOINTS/blob/dev-auto-annotate/tools/visualize-camera.py.


Viewing all articles
Browse latest Browse all 16595

Trending Articles