df_original
represents the ice-cream inspector on station A
and B
:
df_original = pl.DataFrame( {"station": ["A", "A", "A", "A", "B", "B", "B", "B"],"ice_cream_date": [1, 2, 3, 4, 1, 2, 3, 4],"customers": [10, 20, 30, 5, 5, 7, 4, 10],"event": [0, 1, 0, 1, 1, 0, 1, 0], })
ice_cream_date
is the date encoded.customers
represent the number of customersevent
repersent the binary encoding where an inspector
df_evnets
is where event == 1
in df_original
:
df_events = pl.DataFrame( {"events": [1, 1, 1, 1],"ice_cream_date": [2, 4, 1, 3],"station": ["A", "A", "B", "B"],"customers": [20, 5, 5, 4],"evaluation_span": [10, 2, 2, 2],"evaluation_end_date": [4, 4, 3, 4],"evaluation_end_date_customer": [5, 5, 4, 10],"good_customer": [30, 10, 8, 12],"bad_customer": [5, 0, 4, 5], })
evaluation_span
is the number of days after the inspection dateevaluation_end_date
is the latest day for the inspection. (if the date+evaluation_span > max avaliable date, the evaluation_end_date is the max avaliable date.)evaluation_end_date_customer
is the number of customers at theevaluation_end_date
indf_original
good_customer
is the good threshold for an inspector to give the station "good" rating on a particularice_cream_date
bad_customer
: the bad threshold
Struglling with:I want to label whether a station has being given good
or bad
rating for every non-zero event.
If an inspector sees the number of customers exceeds(dips below) the good(bad) threshold first, the station will be given good(bad) rating no matter of the length of the event span
Expected output:
shape: (4, 7)┌────────────────┬─────────┬────────────────────┬──────┬─────┬────────────────┬────────────────────┐│ ice_cream_date ┆ station ┆ evaluation_custome ┆ good ┆ bad ┆ evaluation_end ┆ actual_evaluation_ ││ --- ┆ --- ┆ rs ┆ --- ┆ --- ┆ --- ┆ end_date ││ i64 ┆ str ┆ --- ┆ i64 ┆ i64 ┆ i64 ┆ --- ││┆┆ i64 ┆┆┆┆ i64 │╞════════════════╪═════════╪════════════════════╪══════╪═════╪════════════════╪════════════════════╡│ 2 ┆ A ┆ 30 ┆ 1 ┆ 0 ┆ 0 ┆ 3 ││ 4 ┆ A ┆ 5 ┆ 0 ┆ 0 ┆ 1 ┆ 4 ││ 1 ┆ B ┆ 4 ┆ 0 ┆ 1 ┆ 1 ┆ 3 ││ 3 ┆ B ┆ 10 ┆ 0 ┆ 0 ┆ 1 ┆ 4 │└────────────────┴─────────┴────────────────────┴──────┴─────┴────────────────┴────────────────────┘
evaluation_customers
is the number of customers used for the evaluationgood
is the good binary label, indicating that during the(event_date, event_date+evaluation_span], an inspector
bad
is the bad binary label.evaluation_end
is the evaluation end label, indicating that the number of customers did not exceeds(dips below) the good(bad) threshold during(event_date, event_date+span)
actual_evaluation_end_date
is the date where the evaluation ends (good or bad threshold reached)