I have a dataframe like this:
solution_id 0 1 2 30 26688 NaN NaN NaN NaN1 26689 NaN NaN NaN NaN2 26690 NaN NaN NaN NaN3 26691 NaN NaN NaN NaN4 26692 NaN NaN NaN NaN... ... .. .. .. ..10398 37086 NaN NaN NaN NaN10399 37087 NaN NaN NaN NaN10400 37088 NaN NaN NaN NaN10401 37089 NaN NaN NaN NaN10402 37090 NaN NaN NaN NaN[10403 rows x 5 columns]
I'm going to receive a solution_id and a list of 4 values (let's say [True, False, False, True]).What I need to do is ind the row with the correspondent solution_id and replace the following columns (0, 1, 2, 3) with the list.
I have tried using something like:
filter_ = (df['solution_id'] == solution_id)df.loc[filter_] = [solution_id] + results
Or even:
idx = df['solution_id'].loc[df['solution_id'] == solution_id].index[0]df.loc[idx] = [solution_id] + results
But both don't work and I'm not sure why. The first runs but doesn't register anything and the second one says the index is empty, so I'm assuming it is not finding anything with the filter.Problem is, I know for sure that every solution_id is in there. So I don't know what to do.
Any help is appreciated! Thank you for reading!