Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 14040

Replacing values on a dataframe row using a specific value as reference

$
0
0

I have a dataframe like this:

       solution_id   0   1   2   30            26688 NaN NaN NaN NaN1            26689 NaN NaN NaN NaN2            26690 NaN NaN NaN NaN3            26691 NaN NaN NaN NaN4            26692 NaN NaN NaN NaN...            ...  ..  ..  ..  ..10398        37086 NaN NaN NaN NaN10399        37087 NaN NaN NaN NaN10400        37088 NaN NaN NaN NaN10401        37089 NaN NaN NaN NaN10402        37090 NaN NaN NaN NaN[10403 rows x 5 columns]

I'm going to receive a solution_id and a list of 4 values (let's say [True, False, False, True]).What I need to do is ind the row with the correspondent solution_id and replace the following columns (0, 1, 2, 3) with the list.

I have tried using something like:

filter_ = (df['solution_id'] == solution_id)df.loc[filter_] = [solution_id] + results

Or even:

idx = df['solution_id'].loc[df['solution_id'] == solution_id].index[0]df.loc[idx] = [solution_id] + results

But both don't work and I'm not sure why. The first runs but doesn't register anything and the second one says the index is empty, so I'm assuming it is not finding anything with the filter.Problem is, I know for sure that every solution_id is in there. So I don't know what to do.

Any help is appreciated! Thank you for reading!


Viewing all articles
Browse latest Browse all 14040

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>