I am trying to re-map the token ids with the ones from my custom tokenizer, but the captioned TypeError
appears. Here is my custom model:
class MyModel(BartForConditionalGeneration): def __init__(self, config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model, config.pad_token_id) def forward(self, input_ids, **kwargs): input_ids = input_ids.long().cuda() input_embeds = self.shared(input_ids) return super().forward(input_ids, input_embeds = input_embeds, **kwargs) # TypeError appears here
The error appears when I use the model for training.
In the source code of transformers 4.28.1
(the version I am using), the input_embeds
is there.
What did I miss? how do I solve this unexpected argument issue?