Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 13861

Why is the output signal identical to the input signal in my attempt to implement a bandpass, butterworth filter?

$
0
0

This is my code:

def mask(mask_cols):"""    This function masks specific columns of the pupil dataframe."""    masked_df = pd.read_csv(con.CLEANED_PUPIL_GAZE)    masked_df = mask_pupil_first_derivative(masked_df, threshold=3.0,                                mask_cols=['diameter', 'diameter_3d'])    return masked_dfdef smooth(columns_to_smooth):"""    This function smooths two columns of the interpolated pupil dataframe.    :param columns_to_smooth: diameter and diamete 3d columns."""    original_df = mask(mask_cols=['diameter', 'diameter_3d'])    smooth_df = original_df    logging.basicConfig(filename='filtering_errors.log', level=logging.ERROR)    print(smooth_df)    print("Data will be now be smoothed with a low-pass BW filter.")    nyquist = 0.5 * con.sample_rate_ET    cutoff_high = 4.0 # Example: Upper bound for smoothing    cutoff_low = 0.01  # Example: Lower bound for smoothing    # Calculate normalized cutoff frequencies    normalized_cutoff_low = cutoff_low / nyquist    normalized_cutoff_high = cutoff_high / nyquist    for column in columns_to_smooth:        try:            # Check for NaNs before filtering            if smooth_df[column].isnull().any():                raise ValueError(f"NaN values detected in column {column} before filtering")            # Apply Butterworth filter to the selected column            b, a = butter(N=3, Wn=[normalized_cutoff_low, normalized_cutoff_high],                          btype='bandpass', fs=con.sample_rate_ET)            smooth_values = filtfilt(b, a, smooth_df[column])            # Check for NaNs after filtering            if np.isnan(smooth_values).any():                raise ValueError(f"NaN values detected after filtering column {column}")            # Update the column in smooth_df with the filtered values            smooth_df[column] = smooth_values            print(smooth_values)        except ValueError as e:            print(f"Error: {e}")            # Handle the error, e.g., log the error, skip this column, or set NaNs as appropriate    # Save the smoothed data to a new CSV file    smooth_df.to_csv(con.SMOOTHED_PUPIL, index=False)    # Plot the frequency response of the filter for the current column    w, h = freqs(b, a)    plt.semilogx(w, 20 * np.log10(abs(h)))    plt.title(f'Butterworth filter frequency response for column {column}')    plt.xlabel('Frequency [radians / second]')    plt.ylabel('Amplitude [dB]')    plt.margins(0, 0.1)    plt.grid(which='both', axis='both')    plt.axvline(100, color='green')  # cutoff frequency    plt.show()    # Assuming 'original_df' contains the original data before smoothing and 'smooth_df' contains the smoothed data    # Plot original and smoothed data for comparison    plt.plot(original_df['pupil_timestamp'], original_df['diameter'], label='Original')    plt.plot(smooth_df['pupil_timestamp'], smooth_df['diameter'], label='Smoothed')    plt.xlabel('Timestamp')    plt.ylabel('Diameter')    plt.title('Comparison of Original and Smoothed Data')    plt.legend()    plt.show()    # Calculate summary statistics    original_mean = original_df['diameter'].mean()    smoothed_mean = smooth_df['diameter'].mean()    original_std = original_df['diameter'].std()    smoothed_std = smooth_df['diameter'].std()    # Print summary statistics    print(f"Original Mean: {original_mean}, Smoothed Mean: {smoothed_mean}")    print(f"Original Standard Deviation: {original_std}, Smoothed Standard Deviation: {smoothed_std}")

I am working with eye-tracking data with an average sampling rate of 120 Hz (but it could be different for each dataset). The original and smoothed dataset have the same mean and standard deviation and the graphs are overlaid.

There is no smoothing going on. What should I do?


Viewing all articles
Browse latest Browse all 13861

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>