Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 13891

Prevent duplicate results from previous frame in object tracking

$
0
0

Currently, I am working on Object detection, tracking, and counting. I want to store the results whenever the vehicle crosses the line, however, I always get duplicate results.

How can I prevent these duplicates from registering from a previous frame?

Here is the camera code:

class Camera(BaseCamera):"""    OpenCV video stream"""    video_source = 0    start, end = Point(0, 500), Point(1280, 500)    detector = Detector()    tracker = ByteTrack()    line_zone = LineZone(start=start, end=end)    annotator = LineZoneAnnotator()    def __init__(self, enable_detection: bool = False):        video_source = os.environ.get("VIDEO_SOURCE")        try:            video_source = int(video_source)        except Exception as exp:    # pylint: disable=broad-except            if not video_source:                raise EnvironmentError("Cannot open the video source!") from exp        finally:            Camera.set_video_source(video_source)        super().__init__()        self.enable_detection = enable_detection    @staticmethod    def set_video_source(source):"""Set video source"""        Camera.video_source = source    @classmethod    def frames(cls):"""        Get video frame"""        camera = cv2.VideoCapture(Camera.video_source)        if not camera.isOpened():            raise RuntimeError("Could not start camera.")        while True:            # read current frame            ret, img = camera.read()            # Loop back            if not ret:                camera.set(cv2.CAP_PROP_POS_FRAMES, 0)                continue            # Object detection            results = cls.detector(image=img)            selected_classes = [ 2, 3]            tensorflow_results = results.detections            cls.annotator.annotate(img, cls.line_zone)            if not tensorflow_results:                yield cv2.imencode(".jpg", img)[1].tobytes()                continue            detections = Detections.from_tensorflow(tensorflow_results=tensorflow_results)            detections = cls.tracker.update_with_detections(detections=detections)            detections = detections[np.isin(detections.class_id, selected_classes)]            result=cls.line_zone.trigger(detections)            if type(result)!=type(None) and len(result)>=3:                print(result[2])            img = visualize(image=img, detections=detections)            # encode as a jpeg image and return it            yield cv2.imencode(".jpg", img)[1].tobytes()

Viewing all articles
Browse latest Browse all 13891

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>