Currently, I am working on Object detection, tracking, and counting. I want to store the results whenever the vehicle crosses the line, however, I always get duplicate results.
How can I prevent these duplicates from registering from a previous frame?
Here is the camera code:
class Camera(BaseCamera):""" OpenCV video stream""" video_source = 0 start, end = Point(0, 500), Point(1280, 500) detector = Detector() tracker = ByteTrack() line_zone = LineZone(start=start, end=end) annotator = LineZoneAnnotator() def __init__(self, enable_detection: bool = False): video_source = os.environ.get("VIDEO_SOURCE") try: video_source = int(video_source) except Exception as exp: # pylint: disable=broad-except if not video_source: raise EnvironmentError("Cannot open the video source!") from exp finally: Camera.set_video_source(video_source) super().__init__() self.enable_detection = enable_detection @staticmethod def set_video_source(source):"""Set video source""" Camera.video_source = source @classmethod def frames(cls):""" Get video frame""" camera = cv2.VideoCapture(Camera.video_source) if not camera.isOpened(): raise RuntimeError("Could not start camera.") while True: # read current frame ret, img = camera.read() # Loop back if not ret: camera.set(cv2.CAP_PROP_POS_FRAMES, 0) continue # Object detection results = cls.detector(image=img) selected_classes = [ 2, 3] tensorflow_results = results.detections cls.annotator.annotate(img, cls.line_zone) if not tensorflow_results: yield cv2.imencode(".jpg", img)[1].tobytes() continue detections = Detections.from_tensorflow(tensorflow_results=tensorflow_results) detections = cls.tracker.update_with_detections(detections=detections) detections = detections[np.isin(detections.class_id, selected_classes)] result=cls.line_zone.trigger(detections) if type(result)!=type(None) and len(result)>=3: print(result[2]) img = visualize(image=img, detections=detections) # encode as a jpeg image and return it yield cv2.imencode(".jpg", img)[1].tobytes()