Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 13861

How to integrate SUMO vehicles into Python using TracI?

$
0
0

I am trying to simulate the charging of electric vehicles by a mobile charger, based on the charging urgency of the vehicles (EDF and Baseline are the two algorithms which determine the urgency of the charge requester vehicles). I am unable to integrate the vehicles from SUMO into my Python code. I am not understanding how to do it. The code so far looks like this:

'''from __future__ import absolute_importfrom __future__ import print_functionimport osimport sysimport optparseimport randomimport xml.etree.ElementTree as ETimport operator  # get max value of a dictimport math  # sqrt()from datetime import datetimefrom sumolib import checkBinaryimport traciimport randomimport sysfrom sumolib import net  # get junction's nearby edgefrom helper.prior import *from helper.helperFuncs import *# Log System:# Choose keywords from following to customize the log printing.# {"core"}# comments = {}comments = {"core"}# we need to import python modules from the $SUMO_HOME/tools directoryif 'SUMO_HOME' in os.environ:    tools = os.path.join(os.environ['SUMO_HOME'], 'tools')    sys.path.append(tools)    dayuanSUMOpath = os.path.join("/usr", "local", "Cellar", "sumo", "1.14.1", "share", "sumo", "tools")    sys.path.append(dayuanSUMOpath)    print("PATH:", sys.path)else:    sys.exit("please declare environment variable 'SUMO_HOME'")netfile = 'netfiles/jawad.grid.net.xml'net_xml = net.readNet(netfile)def run():    if "core" in comments:        print("\nexecute the TraCI control loop.\n")    step = 0    # Prepare variables used for all cycles    # get all TLs    # allTLIds = traci.trafficlight.getIDList() # all traffic lights id    allTLIds = AllTLIDs  # AllTLIDs from prior    # AllEdgeIDs from prior    if "core" in comments:        print("\n\nProgram starts. \n\nThere are", len(allTLIds), "traffic lights totally.\n")  # =12    # while traci.simulation.getTime() < 200:  # unit is second. Set a short time for testing    while traci.simulation.getMinExpectedNumber() > 0:  # run until all v have arrived        traci.simulationStep()  # forward one step        if "core" in comments:            print("\n\nCurrent step: ", step, "\n\n")        allVehIDs = []        # iterate each edge        for edge_id in AllEdgeIDs:            allVehIDs_inThisEdge = traci.edge.getLastStepVehicleIDs(edge_id)            print(edge_id, allVehIDs_inThisEdge)            allVehIDs.extend(allVehIDs_inThisEdge)        print("All veh id in current SUMO step: ", allVehIDs)        # Create/update Vehicle objects using SUMO API calls        vehicles = [Vehicle(veh_id) for veh_id in allVehIDs]        for vehicle in vehicles:            vehicle.update_parameters()            print("veh id: ", vehicle.veh_id, " Speed: ", vehicle.speed)            print("veh id: ", vehicle.veh_id, " Neighbors: ", vehicle.neighbors)            print("veh id: ", vehicle.veh_id, " ElectricityConsumption: ", vehicle.electricity_consumption)            print("veh id: ", vehicle.veh_id, " Distance from starting point: ", vehicle.distance_from_start)            print("veh id: ", vehicle.veh_id, " Position: ", vehicle.position)            print("veh id: ", vehicle.veh_id, " RoadID: ", vehicle.road_id)            print("veh id: ", vehicle.veh_id, " Route: ", vehicle.route)# Class to represent a Vehicleclass Vehicle:    def __init__(self, veh_id):        self.veh_id = veh_id        self.speed = 0        self.neighbors = []        self.electricity_consumption = 0        self.distance_from_start = 0        self.position = (0, 0)        self.road_id = ""        self.route = []    def update_parameters(self):        self.speed = traci.vehicle.getSpeed(self.veh_id)        self.neighbors = traci.vehicle.getNeighbors(self.veh_id, 10)        self.electricity_consumption = traci.vehicle.getElectricityConsumption(self.veh_id)        self.distance_from_start = traci.vehicle.getDistance(self.veh_id)        self.position = traci.vehicle.getPosition(self.veh_id)        self.road_id = traci.vehicle.getRoadID(self.veh_id)        self.route = traci.vehicle.getRoute(self.veh_id)# Class to represent a Droneclass Drone:    def __init__(self, lat, lon, speed, soc):        self.lat = lat        self.lon = lon        self.speed = speed        self.soc = soc    def calculate_distance(self, lat1, lon1, lat2, lon2):        # Radius of the Earth in kilometers        earth_radius = 6371        # Convert coordinates to radians        lat1_rad = math.radians(lat1)        lon1_rad = math.radians(lon1)        lat2_rad = math.radians(lat2)        lon2_rad = math.radians(lon2)        # Haversine formula        dlat = lat2_rad - lat1_rad        dlon = lon2_rad - lon1_rad        a = math.sin(dlat / 2) ** 2 + math.cos(lat1_rad) * math.cos(lat2_rad) * math.sin(dlon / 2) ** 2        c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))        # Distance in kilometers        distance = earth_radius * c        return distance    def calculate_rdv_loc(self, vehicle, charging_range):        # Calculate the speed of the vehicle based on its state of charge        vehicle_speed = vehicle.speed / 10        # Calculate the distance between the vehicle and the drone        distance_vehicle_drone = self.calculate_distance(vehicle.position[0], vehicle.position[1], self.lat, self.lon)        # Calculate the time for the drone to reach the vehicle        time_to_reach = distance_vehicle_drone / self.speed        # Calculate the distance the vehicle will travel during the drone's travel time        distance_vehicle_travel = time_to_reach * vehicle_speed        # Calculate the RDV-LOC based on the selected vehicle and charging range        rdvloc_lat = vehicle.position[0] + (distance_vehicle_travel / 111)  # 1 degree of latitude is approximately 111 kilometers        rdvloc_lon = vehicle.position[1]        return rdvloc_lat, rdvloc_lon    def charge(self, vehicle_index, rdv_loc):        # Perform charging logic here        pass# Class to represent the Baseline algorithmclass Baseline:    def __init__(self, drone, charging_range, charging_stations):        self.drone = drone        self.charging_range = charging_range        self.charging_stations = charging_stations    def charge(self, vehicles):        # Logic for the Baseline algorithm        pass# Class to represent the EDF algorithmclass EDF:    def __init__(self, drone, charging_range):        self.drone = drone        self.charging_range = charging_range    def charge(self, vehicles):        # Logic for the EDF algorithm        pass# Connect to SUMO and start the simulationtraci.close()sumoBinary = checkBinary('sumo')traci.start([sumoBinary, "-c","C:/Users/Sadi M Jawad Ahsan/OneDrive - UMBC/UMBC Studies/Spring_2024/EV_charging_project/sookyoung_paper/code/jawad.grid.sumocfg"])traci.simulationStep()# Retrieve the IDs of the vehicles generated by SUMOall_vehicle_ids = traci.vehicle.getIDList()# Create/update Vehicle objects using SUMO API callsvehicles = [Vehicle(vehicle_id) for vehicle_id in all_vehicle_ids]# Run the simulation looprun()# Disconnect from SUMOtraci.close()sys.stdout.flush()'''

Viewing all articles
Browse latest Browse all 13861

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>