Quantcast
Channel: Active questions tagged python - Stack Overflow
Viewing all articles
Browse latest Browse all 14215

i am having trouble in project

$
0
0

i am working on Youtube API for Python: How to Create a Unique Data Portfolio Project

and i always got an error message while running this code:

import isodatevideo_df["durationSecs"]= video_df["duration"].apply(lambda x: isodate.parse_duration(x))video_df["durationSecs"]= video_df["durationSecs"].astype("timedelta64[s]")

error message is:

TypeError                                 Traceback (most recent call last) Cell In[111], line 2      1 import isodate----> 2 video_df["durationSecs"]= video_df["duration"].apply(lambda x: isodate.parse_duration(x))      3 video_df["durationSecs"]= video_df["durationSecs"].astype("timedelta64[s]")File /usr/local/lib/python3.11/site-packages/pandas/core/series.py:4764, in Series.apply(self, func, convert_dtype, args, by_row, **kwargs)    4629 def apply(    4630     self,    4631     func: AggFuncType,    (...)    4636     **kwargs,    4637 ) -> DataFrame | Series:    4638   """    4639     Invoke function on values of Series.    4640     (...) 4755     dtype: float64    4756     """    4757     return SeriesApply(    4758         self,    4759         func,    4760       convert_dtype=convert_dtype,    4761         by_row=by_row,    4762    args=args,    4763         kwargs=kwargs,-> 4764     ).apply()File /usr/local/lib/python3.11/site-packages/pandas/core/apply.py:1209, in SeriesApply.apply(self)    1206     return self.apply_compat()    1208# self.func is Callable-> 1209 return self.apply_standard()File /usr/local/lib/python3.11/site-packages/pandas/core/apply.py:1289, in SeriesApply.apply_standard(self)    1283 # row-wise access    1284 # apply doesn't have a `na_action` keyword and for backward compat reasons    1285 # we need to give `na_action="ignore"` for categorical data.    1286 # TODO: remove the `na_action="ignore"` when that default has been changed in    1287 #  Categorical (GH51645).    1288 action = "ignore" if isinstance(obj.dtype, CategoricalDtype) else None-> 1289 mapped = obj._map_values(    1290     mapper=curried, na_action=action, convert=self.convert_dtype    1291 )    1293 if len(mapped) and isinstance(mapped[0], ABCSeries):    1294     # GH#43986 Need to do list(mapped) in order to get treated as nested    1295     #  See also GH#25959 regarding EA support    1296     return obj._constructor_expanddim(list(mapped), index=obj.index)File /usr/local/lib/python3.11/site-packages/pandas/core/base.py:919, in IndexOpsMixin._map_values(self, mapper, na_action, convert)    916 arr = self._values    918 if isinstance(arr, ExtensionArray):--> 919     return arr.map(mapper, na_action=na_action)    921 return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert)File /usr/local/lib/python3.11/site-packages/pandas/core/arrays/_mixins.py:80, in ravel_compat.<locals>.method(self, *args, **kwargs)     77 @wraps(meth)     78 def method(self, *args, **kwargs):     79     if self.ndim == 1:---> 80         return meth(self, *args, **kwargs)     82     flags = self._ndarray.flags     83     flat = self.ravel("K")File /usr/local/lib/python3.11/site-packages/pandas/core/arrays/datetimelike.py:723, in DatetimeLikeArrayMixin.map(self, mapper, na_action)    719 @ravel_compat    720 def map(self, mapper, na_action=None):    721     from pandas import Index--> 723     result = map_array(self, mapper, na_action=na_action)    724     result = Index(result)    726     if isinstance(result, ABCMultiIndex):File /usr/local/lib/python3.11/site-packages/pandas/core/algorithms.py:1814, in map_array(arr, mapper, na_action, convert)    1812 values = arr.astype(object, copy=False)    1813 if na_action is None:-> 1814     return lib.map_infer(values, mapper, convert=convert)    1815 else:    1816     return lib.map_infer_mask(    1817         values, mapper, mask=isna(values).view(np.uint8), convert=convert    1818     )File lib.pyx:2926, in pandas._libs.lib.map_infer()Cell In[111], line 2, in <lambda>(x)      1 import isodate----> 2 video_df["durationSecs"]= video_df["duration"].apply(lambda x: isodate.parse_duration(x))      3 video_df["durationSecs"]= video_df["durationSecs"].astype("timedelta64[s]")File /usr/local/lib/python3.11/site-packages/isodate/isoduration.py:86, in parse_duration(datestring)     58 """     59 Parses an ISO 8601 durations into datetime.timedelta or Duration objects.     60     (...)     83   days set to 0.     84 """     85 if not isinstance(datestring, string_types):---> 86     raise TypeError("Expecting a string %r" % datestring)     87 match = ISO8601_PERIOD_REGEX.match(datestring)     88 if not match:     89     # try alternative format:TypeError: Expecting a string Timedelta('0 days 00:00:29')

Viewing all articles
Browse latest Browse all 14215

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>